
27

Compiling to Categories

CONAL ELLIOTT, Target, USA

It is well-known that the simply typed lambda-calculus is modeled by any cartesian closed category
(CCC). This correspondence suggests giving typed functional programs a variety of interpretations, each
corresponding to a different category. A convenient way to realize this idea is as a collection of meaning-
preserving transformations added to an existing compiler, such as GHC for Haskell. This paper describes
such an implementation and demonstrates its use for a variety of interpretations including hardware circuits,
automatic differentiation, incremental computation, and interval analysis. Each such interpretation is a
category easily defined in Haskell (outside of the compiler). The general technique appears to provide a
compelling alternative to deeply embedded domain-specific languages.

CCS Concepts: • Theory of computation → Lambda calculus; • Software and its engineering → Func-
tional languages; Compilers;

Additional Key Words and Phrases: category theory, compile-time optimization, domain-specific languages

ACM Reference Format:
Conal Elliott. 2017. Compiling to Categories. Proc. ACM Program. Lang. 1, ICFP, Article 27 (September 2017),
27 pages.
https://doi.org/10.1145/3110271

1 INTRODUCTION
As discovered by Joachim Lambek [1980, 1986], the models of the simply typed λ-calculus (STLC)
are exactly the cartesian closed categories (CCCs). Moreover, there is a simple, compositional,
syntactic transformation from STLC to the vocabulary of CCCs. Each CCC, i.e., each interpretation
of this vocabulary, thus gives an interpretation of the STLC. This paper explores a practical
application of Lambek’s discovery for giving a variety of principled non-standard interpretations
of Haskell programs by means of a fairly simple GHC plugin that performs the needed source-
to-source transformation to generalize Haskell code to categories other than the usual one. The
interpretations we show include compiling Haskell to massively parallel hardware, linear maps
(generalized “matrices”), automatic differentiation, incremental computation, and interval analysis,
as well as a textual presentation of CCC expressions for debugging. Moreover, these CCCs combine
easily and usefully. For instance, one can describe a function directly in Haskell and then apply a
few interpretations to compute the exact nth derivative (as a linear map), incrementally, and in
hardware. As we’ll see, we can sometimes get away with less power, particularly with a cartesian
category (without closure), although at the cost of larger categorical translations. We can also make
use of additional power, particularly bi-cartesian (coproducts), allowing translation of sum types
and case expressions.

The GHC plugin that implements categorical interpretation is modular in that it has no knowledge
of specific target categories. To introduce a new interpretation, one simply defines a type and few

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2017 Copyright held by the owner/author(s).
2475-1421/2017/9-ART27
https://doi.org/10.1145/3110271

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

https://doi.org/10.1145/3110271
https://doi.org/10.1145/3110271

27:2 Conal Elliott

Haskell class instances for it—all in regular Haskell code without no exposure to compiler internals.
Each interpretation corresponds to a (possibly closed) cartesian functor, and this property makes
for a simple specification, useful in calculating the needed class instances.

2 CARTESIAN CLOSED CATEGORIES
There are many introductions to category theory [Awodey 2006; Lawvere and Schanuel 2009]. For
the purposes of this paper, a brief description of interfaces will do. The basic category interface,
along with its instance for functions, is as follows:
infixr 9 ◦
class Category k where

id :: a ‘k‘ a
(◦) :: (b ‘k‘ c) → (a ‘k‘ b) → (a ‘k‘ c)

instance Category (→) where
id = λx → x
g ◦ f = λx → g (f x)

The category laws state that id is the identity for composition and that composition is associative.
A cartesian category adds products, with one introduction and two elimination operations:
infixr 3 △
class Category k ⇒ Cartesian k where

(△) :: (a ‘k‘ c) → (a ‘k‘ d) → (a ‘k‘ (c × d))
exl :: (a × b) ‘k‘ a
exr :: (a × b) ‘k‘ b

instance Cartesian (→) where
f △ g = λx → (f x, g x)
exl = λ(a, b) → a
exr = λ(a, b) → b

In this paper, “a × b” is a synonym for the Haskell notation “(a, b)”. More generally, each category
can have its own product construction, and the category’s “objects”/types do not need to have kind
∗ (classifying values). Both forms of added generality are quite useful, but they add complexity that
would distract from the main topic of this paper (though see Section 12).

The Cartesian operations must satisfy a universal property:

∀h. h ≡ f △ g ⇐⇒ exl ◦ h ≡ f ∧ exr ◦ h ≡ g

The names of these operators and style of writing the universal property, as well as those below,
are adopted from Gibbons [2002]. A “terminal” category k has a designated object 1 (corresponding
to Haskell’s () type), such that there is exactly one k-arrow from a to 1 for any object a in k:
class Category k ⇒ Terminal k where
it :: a ‘k‘ 1

instance Terminal (→) where
it = λa→ ()

Finally, a cartesian closed category (CCC) adds “exponential” types a Z⇒ b (representing mor-
phisms as values/objects) with three operations:
class Cartesian k ⇒ Closed k where

apply :: ((a Z⇒ b) × a) ‘k‘ b
curry :: ((a × b) ‘k‘ c) → (a ‘k‘ (b Z⇒ c))
uncurry :: (a ‘k‘ (b Z⇒ c)) → ((a × b) ‘k‘ c)

instance Closed (→) where
apply (f , x) = f x
curry f = λa b → f (a, b)
uncurry g = λ(a, b) → f a b

The notation “(Z⇒)” is a synonym for (→) in this paper but serves to remind us that each CCC can
have its own notion of exponentials. The universal property:

apply ◦ (curry f ◦ exl △ exr) ≡ f

We will also want to consider categorical re-interpretations of some primitive constants. For
base-typed primitives such as booleans and numbers, we’ll use arrows from terminal objects:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:3

class Terminal k ⇒ ConstCat k b where
unitArrow :: b → (1 ‘k‘ b)

instance ConstCat (→) b where
unitArrow b = λ() → b

It’s sometimes more convenient to allow non-terminal domains:

const :: ConstCat k b ⇒ b → (a ‘k‘ b)
const b = unitArrow b ◦ it

Function-valued primitives may have interpretations in other categories, which can be captured in
additional ad hoc Category subclasses. For instance,
class Cartesian k ⇒ BoolCat k where
notC :: Bool ‘k‘ Bool
andC, orC :: (Bool × Bool) ‘k‘ Bool

class NumCat k a where
negateC :: a ‘k‘ a
addC,mulC :: (a × a) ‘k‘ a
...

instance BoolCat (→) where
notC = ¬
andC = uncurry (∧); orC = uncurry (∨)

instance Num a⇒ NumCat (→) a where
negateC = negate
addC = uncurry (+);mulC = uncurry (∗)

...

In a more general setting, different categories can have different Bools. Note that primitives are in
uncurried form.

3 CHANGING VOCABULARIES: CARTESIAN CLOSED CATEGORIES
The first step in compiling to categories is a syntactic transformation that converts the language of
the simply typed λ-calculus (STLC) to a particular point-free form, corresponding to the vocabulary
of cartesian closed categories (CCCs). For expository purposes, we will stay within the function
category. The generalization to other categories will come in Section 4. A translation from the STLC
can be defined in terms of typing contexts [Chu-Carroll 2012; Curien 1986]. In the translation
as described below, however, every translated term is instead a closed, explicit λ-abstraction—an
especially convenient style for use from within GHC’s simplifier (Section 5), which does not provide
typing contexts. Translation occurs via a small collection of equivalences, presented below, to be
used as rewrite rules, with each one taking us closer to a pure CCC expression. The λ-calculus
terms are expressed in Haskell notation. Since we are translating function-typed terms, we can
assume that we have an explicit abstraction, λ(x :: τ) → U for some term U ; otherwise, simply
η-expand. Thus we need consider only a small number of cases—one for each kind of lambda term
that appears in the body of a λ-abstraction.
First consider the case that the abstraction body is a variable. Since our terms are closed and

well-typed, there is only one possible variable choice, so we must have the identity function on τ :
(λx → x) ≡ id :: τ → τ .
Translating an application (as abstraction body) is a little more involved, involving the Category,

Cartesian, and Closed instances for functions:

λx → U V
≡ {- definition of apply on (→) -}
λx → apply (U ,V)

≡ {- definition of (△) on (→) -}
λx → apply (((λx → U) △ (λx → V)) x)
≡ {- definition of (◦) on (→) -}
apply ◦ ((λx → U) △ (λx → V))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:4 Conal Elliott

If the body of an abstraction is an abstraction, we can curry a translation of the uncurried form:

λx → λy → U
≡ {- definition of curry on (→) -}
curry (λ(x, y) → U)

For case expressions, suppose the scrutinee expression has a product type:

(λx → case scrut of { (u, v) → rhs }) ≡ (λx → let {w = scrut; u = exl z; v = exr z } in rhs)

These let bindings are often then eliminated by GHC’s simplifier. Other single-constructor data
types are handled by conversion (Section 9). Translating multi-constructor data types requires a
distributive category (Section 8).
The remaining case is a constant as abstraction body, i.e., λx → c. There are two possibilities.

For simple types like Bool and Int, use const:

(λx → c) ≡ const c

If c has function type and an interpretation via BoolCat, NumCat, etc, translate it accordingly:

(λx → ¬) ≡ constFun notC
(λx → (∧)) ≡ constFun (curry andC)
...

where

constFun :: Closed k ⇒ (a ‘k‘ b) → (z ‘k‘ (a Z⇒ b))
constFun f = curry (f ◦ exr)

To see the translation to CCC form in practice, consider the following definitions:

sqr :: Num a⇒ a→ a
sqr a = a ∗ a

magSqr :: Num a⇒ a × a→ a
magSqr (a, b) = sqr a + sqr b

cosSinProd :: Floating a⇒ a × a→ a × a
cosSinProd (x, y) = (cos z, sin z) where z = x ∗ y

Type-specialized to a primitive type like Double, and converted to CCC form:

sqr = mulC ◦ (id △ id)
magSqr = addC ◦ (mulC ◦ (exl △ exl) △ mulC ◦ (exr △ exr))
cosSinProd = (cosC △ sinC) ◦mulC

The sqr conversion, step-by-step:

sqr @Double
≡ {- inlining and simplifications by GHC -}
λx → timesDouble x x
≡ {- translate application -}
apply ◦ ((λx → timesDouble x) △ (λx → x))
≡ {-η reduction by GHC -}
apply ◦ (timesDouble △ (λx → x))
≡ {- translate timesDouble and variable -}
apply ◦ (curry mulC △ id)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:5

H id ≡ id
H (g ◦ f) ≡ H g ◦ H f

(a) Category

H exl ≡ exl
H exr ≡ exr
H (f △ g) ≡ H f △ H g

(b) Cartesian

H apply ≡ apply
H (curry f) ≡ curry (H f)
H (uncurry g) ≡ uncurry (H g)

(c) Closed

Fig. 1. Homomorphism properties

≡ {- Law for closed categories -}
mulC ◦ (id △ id)

That last law, apply ◦ (curry h △ g) ≡ h ◦ (id △ g), is a consequence of the universal property for
exponentials. This law, like many others, is implemented as a GHC rewrite rules in syntactic form
[Peyton Jones et al. 2001]. Without such optimizations, cosSinProd becomes (cosC △ sinC) ◦mulC ◦
(exl △ exr).

4 CHANGING CATEGORIES: CLOSED CARTESIAN FUNCTORS
In the previous section, we saw how to re-express STLC programs (with pairing and constants)
into categorical vocabulary without changing their meaning. The value in doing so is that it then
becomes easy to generalize beyond the original (→) category to other categories. Each such other
category becomes an alternative interpretation of the STLC, and hence of Haskell programs, as we
will see. To switch from (→), simply replace the (→) instances of all categorical operations in the
translation above with corresponding instances for another category k.
The consistent replacement of interpretations while keeping vocabulary intact is equivalent to

applying a homomorphism. Figure 1 shows the homomorphism properties for Category, Cartesian,
and Closed.1 Note that the identity and composition on the left are for one category, and on the
right for another.
Together with the translation from STLC to CCC form, these homomorphism equations are

the key to compiling to alternative categories, thus giving sound, non-standard interpretations
of functional programs. Interpreted as rewrite rules (oriented left-to-right), the homomorphism
equations spell out a simple, systematic transformation from one category (initially (→)) to another.
It is important to note that both of these translation steps are syntactic (source code) transformations.
Although homomorphisms are semantic properties, their mechanical application requires access to
and manipulation of syntax. For this reason, the general technique described in this paper is most
naturally implemented as part of compilation rather than a shallow or deep DSL embedding.

5 TRANSFORMING GHC CORE TO CCC
The Glasgow/Glorious Haskell Compiler (GHC) compiles Haskell for execution on CPUs. One of
the major design choices in implementing GHC is to translate the large source language (Haskell)
to a much smaller language, called “GHC Core”. The Core language is a typed λ-calculus with a
powerful type system, namely “System FC” (System F with constraints) [Sulzmann et al. 2007].

Since Core has a far more expressive type system than the STLC, it is not immediately obvious
that the translation from STLC to CCC form as described above is applicable. A few techniques
are required for bridging this gap, the most important being monomorphization. Polymorphism
is extremely useful in writing modular programs, but if the ultimate function being compiled is
1The properties are also known as “functor”, “cartesian functor”, and “closed cartesian functor”, respectively. Note that
Haskell’s standard library comes with a Functor type class, but it is restricted to endofunctors on the standard Haskell
category (i.e., from (→) to (→)).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:6 Conal Elliott

monomorphic, then the intermediate polymorphism can be removed by monomorphizing, i.e.,
inlining polymorphic definitions and substituting monotypes for the type variables involved. Due
to the presence of polymorphic recursion in Haskell, monomorphizing does not always have
a finite result, and so sometimes the translation fails to terminate. In the many cases in which
monomorphization does succeed, it has the additional benefit of leading to very efficient code.
For instance, all dictionaries (used to implement type classes) are statically eliminated by partial
evaluation, similarly to the treatment by Jones [1994].
In practice, the transformation to CCC form and conversion from (→) to other CCCs are

implemented as GHC rewrite rules [Peyton Jones et al. 2001]. Transformation is guided by the
presence of a pseudo-function:2

ccc :: (a→ b) → (a ‘k‘ b)

One might expect there to be a constraint on k, such as Closed. Instead, the rewrite rules introduce
their own constraints as needed, allowing flexibility and extensibility. For instance, some target
categories are cartesian but not cartesian closed, so alternative translations are needed. Homomor-
phism rules similar to the H examples of Section 2 push applications of ccc inward, eventually
disappearing, as in the rules for id, exl, exr , and apply above as well as the similar rules for primitives
like addC and mulC. Other rules prepare for homomorphism applicability.

Operating inside of GHC’s simplifier allows translation to be done one fragment at a time with
many other useful simplifications being applied to the results. This synergy between ccc-specific
transformation and more general transformations helps considerably in making the implementation
simple, efficient, and effective.
Rather than dozens of small rewrite rules, most of the rewriting is done in the form of a single

GHC “built-in rule”, which is a Haskell-defined function of type CoreExpr → Maybe CoreExpr ,
injected into GHC’s simplifier [Peyton Jones and Marlow 2002], whose job is to massage Core
expressions into more efficient form. This choice loses some modularity while gaining efficiency
via faster matching. More importantly, built-in rules remove some problematic limitations of the
rewrite rule source language, including lack of side conditions.

The argument to ccc is typically a lambda expression, although it might need to be converted to
one via η-expansion or inlining. In such cases, the ccc rule will perform one transformation step
described in Sections 3 and 4.

For instance, the currying transformation from Section 3, for a target category k, is

ccc (λx → U V) 7−→ applyk ◦ (ccc (λx → U) △k ccc (λx → V))

where the k subscripts here indicate type applications of the categorical methods to the target
category k. Since Core lacks the type classes and methods found in the Haskell source language,
the transformation rule must construct instances explicitly and insert the k-specific versions of the
general methods. These instances are in the form of “class dictionaries”, which are simply records
of methods (Core value identifiers). GHC performs many other simplifications, including method
name inlining. The generated ccc calls, if any, are then further transformed by future applications
of the ccc transformation. Some transformations introduce no new ccc calls, instead generating
simple expressions like idk and exlk .
Adding a new built-in rule to GHC requires writing a Core-to-Core plugin [GHC Team 2016],

packaging some code that alters the normal compiler flow. While plugins can be arbitrarily complex,
a very simple one suffices, attaching one the transformation function to the ccc identifier for GHC’s
Core simplifier to find and apply during normal compilation. Most of the implementation work is
2More generally, ccc would have the signature of a categorical functor, i.e., (a→ b) → (f a ‘k‘ f b). This additional flexibility
complicates translation, but is quite useful (as alluded to in Section 12) and will be addressed in a later paper.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:7

+ OutIn

×

×

Fig. 2. magSqr

In

×

Out

 cos

 sin

Fig. 3. cosSinProd

in this transformation function, which takes a Core expression e and successfully yields an altered
expression Just e′ or fails (Nothing) based on the structure of e, as described above.

6 CONSTRAINED CATEGORIES
The classes in Section 2 (Category, Cartesian, etc) are too simplistic for many useful target categories.
It’s often necessary to allow categories to restrict the domain and codomain types. For instance,
general differentiable functions require a vector space structure, since derivative values are linear
maps between vector spaces having a shared scalar field [Elliott 2009; Spivak 1971]. Similarly,
hardware generation requires representability of types as collections of wires. A similar issue
was explored for constrained monads, leading to a normal form for applicative and monadic
computations that allowed use of the usual, unconstrained Monad class [Sculthorpe et al. 2013a]. It
wasn’t apparent, however, how to apply that solution to categories.

Since different categories will restrict their types (“objects”) differently, let’s add an associated
type predicate (function from type to constraint) to the Category class from Section 2 (via the
“constraint kinds” language extension [Bolingbroke 2011]) and use it to constrain the types involved:

infixr 9 ◦
class Category k where

type Ok k a :: Constraint
type Ok k a = () -- default vacuous constraint
id :: Ok k a⇒ a ‘k‘ a
(◦) :: Ok3 k a b c ⇒ (b ‘k‘ c) → (a ‘k‘ b) → (a ‘k‘ c)

We’ll see a lot of these Ok constraints, so define some helpers, as used in the signature for (◦):

type Ok2 k a b = (Ok k a,Ok k b)
type Ok3 k a b c = (Ok2 k a b,Ok k c)
...

The types involved in Cartesian and Closed methods are similarly constrained by Ok.

7 SOME APPLICATIONS
7.1 Computation Graphs and Compiling Haskell to Hardware
It can be illuminating to visualize programs as computation graphs, revealing potential for parallel
evaluation. For instance, the magSqr and cosSinProd examples in Section 3 can be visualized as in
Figures 2 and 3.
Underlying these diagrams is a Kleisli-like category of directed graphs based on a simple state

monad that supplies output ports and a list of instantiated primitive components.3

data Graph a b = Graph (Ports a→ GraphM (Ports b))

3We could instead combine State Port withWriter [Comp], but the form shown more easily extends optimizations discussed
below.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:8 Conal Elliott

type GraphM = State (Port, [Comp])
data Comp = ∀a b.Comp String (Ports a) (Ports b) -- op name, inputs, outputs

The port collections are represented as a generalized algebraic data type (GADT):

type Port = Int

data Ports :: ∗ → ∗ where
UnitP :: Ports 1
BoolP :: Port → Ports Bool
IntP :: Port → Ports Int
DoubleP :: Port → Ports Double
PairP :: Ports a→ Ports b → Ports (a × b)
FunP :: Graph a b → Ports (a Z⇒ b)

The Category, Cartesian, Terminal, and Closed instances are very like that of Kleisli [Hughes
1998], but they must also manage the isomorphisms between pair ports and port pairs and between
function ports and Graphs:4

instance Category Graph where
type Ok Graph a = GenPorts a
id = Graph return
Graph g ◦ Graph f = Graph (g <=< f)

instance Cartesian Graph where
exl = Graph (λ(PairP a) → return a)
exr = Graph (λ(PairP b) → return b)
Graph f △ Graph g = Graph (liftA2 (liftA2 PairP) f g)

instance Terminal Graph where
it = Graph (const (return UnitP))

instance Closed Graph where
apply = Graph (λ(PairP (FunP (Graph ab)) a) → ab a)
curry (Graph f) = Graph (λa→ return (FunP (Graph (λb → f (PairP a b)))))
uncurry (Graph g) = Graph (λ(PairP a b) → do {FunP (Graph f) ← g a; f b })

All that remains is to define instances for primitive operations, each of which simply adds a
component (graph node) defined by an operation name and a typed collections of ports for the
inputs and the outputs.

These Ports structures are generated from their types, with no ports for 1, one for Bool, Int, and
Double, and pairs of recursively generated structures for pairs:

genPort :: GraphM Port -- single port
genPort = do { (o, comps) ← get; put (o + 1, comps); return o }

class GenPorts a where genPorts :: GraphM (Ports a)

instance GenPorts 1 where genPorts = return UnitP
instance GenPorts Bool where genPorts = fmap BoolP genPort
instance GenPorts Int where genPorts = fmap IntP genPort
instance GenPorts Double where genPorts = fmap DoubleP genPort

4The “<=<” operator is Kleisli composition, of type Monad m⇒ (b → m c) → (a→ m b) → (a→ m c).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:9

instance (GenPorts a,GenPorts b) ⇒ GenPorts (a × b) where
genPorts = liftA2 PairP genPorts genPorts

To add a new graph component, generate output ports by type, associate with the primitive and
inputs, and to the accumulating component list:

genComp :: GenPorts b ⇒ String → Graph a b
genComp name =
Graph (λa→ do {b ← genPorts;modify (second (Comp name a b :)); return b })

Now we have everything we need to easily instantiate the operation-specific classes:

instance BoolCat Graph where
notC = genComp "¬"

andC = genComp "∧"

orC = genComp "∨"

instance (Num a,GenPorts a) ⇒ NumCat Graph a where
negateC = genComp "negate"

addC = genComp "+"

subC = genComp "-"

mulC = genComp "×"

...

The Eq and Num constraints aren’t strictly necessary in this simple implementation, but they serve
to remind us of the expected translation from Eq and Num methods.
Notice that the Category, Cartesian, and Closed methods produce no components. Instead,

Category manages connectivity, Cartesian discards and replicates signals, and Closed generates
sub-graphs.
The simple representation and implementation outlined above can be improved by adding a

few optimizations. The simplest is constant folding: when an operation is fed by only constant
components (having no inputs), perform the operation during graph construction, and generate
another constant component. Other algebraic simplifications can be applied, such as addition with
zero, multiplication by one, double negation, etc. Finally, redundant computation can be eliminated
via hash-consing during graph construction, at the cost of tracking more information about the
graph as it is being generated. In practice, these optimizations are quite worthwhile [Elliott 2017].

Once a computation graph is constructed, it can be rendered into a picture, as in the illustrations
in this paper. Additionally, graphs can be rendered into machine-readable circuit descriptions in a
hardware description language such as Verilog or VHDL. There is a library operation (unknown to
the compiler plugin) that generates a picture and a Verilog source file, roughly:

mkCircuit :: Ok2 Graph a b ⇒ String → Graph a b → IO ()

To make a circuit, one applies the pseudo-function ccc to a monomorphic Haskell function and
gives the result to mkCircuit, e.g., the magSqr example defined in Section 3, type-specialized to
32-bit integers:

main = mkCircuit "magSqr" (ccc (magSqr @Int))

Type inference determines the target category to be Graph, and the plugin’s added transformation
rules push the ccc application progressively inward, inlining where needed, with many of GHC’s
standard simplifications tidying things up along the way. When this main is compiled and run, it
generates the picture in Figure 2 and the following Verilog implementation:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:10 Conal Elliott

module magSqr (In_0, In_1, Out);
input [31:0] In_0;
input [31:0] In_1;
output [31:0] Out;
wire [31:0] Plus_I0;
wire [31:0] Times_I3;
wire [31:0] Times_I4;
assign Plus_I0 = Times_I3 + Times_I4;
assign Out = Plus_I0;
assign Times_I3 = In_0 * In_0;
assign Times_I4 = In_1 * In_1;

endmodule

One can convert graphs to other forms as well. For instance, it was easy to translate to shader
programs for parallel execution on graphics processors, as in Vertigo [Elliott 2004], and to SMT
(satisfiability modulo theories) problems to be solved by Z3 [De Moura and Bjørner 2008].

7.2 Syntax
Section 3 showed CCC expressions for three simple functions (sqr , magSqr , and cosSinProd). Those
expressions were generated by interpreting the corresponding functions in a syntactic category,
which we’ll now see. Since CCC expressions can get large, we’ll want multi-line pretty-printing,
for which we can use a common library [Hughes 1995; Hughes and Peyton Jones 2007].

Start with a simple type of untyped syntax trees:

type DocTree = Tree PDoc

where Tree a is a standard type of rose trees having a value of type a at each node, and PDoc is a
pretty-printing document, parametrized by contextual binding precedence (for inserting parentheses
as needed):

data Tree a = Node a [Tree a]
type PDoc = Rational → Doc

One could use String in place of PDoc in the definition of DocTree, but PDoc allows for complex
constant values that can be pretty-printed and parenthesized in context. CCC expressions are very
simple, and so is pretty-printing, which handles infix operators and general applications:

prettyTree :: DocTree → PDoc
prettyTree (Node d [u, v]) p | Just (q, (lf , rf)) ← lookup name fixities =
maybeParens (p > q) $ sep [prettyTree u (lf q) <+> text name, (prettyTree v) (rf q)]
where name = show (d 0)

fixities = fromList [("◦", (9, assocR)), ("△", (3, assocR)), ("▽", (2, assocR))]
prettyTree (Node f es) p =

maybeParens (¬ (null es) ∧ p > 10) (sep (f 10 :map (λe → prettyTree e 11) es))

Operator fixity is represented by a number (with higher numbers for tighter binding and 10 for
function application) together with a pair of functions that adjust for left and right arguments:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:11

type Prec = Rational
type Fixity = (Prec,Assoc)
type Assoc = (Prec → Prec, Prec → Prec)

assocL, assocR, nonassoc :: Assoc
assocL = (id, succ)
assocR = (succ, id)
nonassoc = (succ, succ)

Next, wrap up these untyped expressions in a phantom-typed representation [Hinze 2003; Leijen
and Meijer 1999], representing an arrow from a to b, and define some utility functions:

newtype Syn a b = Syn DocTree

atom :: Pretty a⇒ a→ Syn a b
atom a = Syn (Node (ppretty a) [])
appt :: String → [DocTree]→ DocTree
appt s ts = Node (const (text s)) ts

app0 :: String → Syn a b
app0 s = Syn (appt s [])
app1 :: String → Syn a b → Syn c d
app1 s (Syn p) = Syn (appt s [p])
app2 :: String → Syn a b → Syn c d → Syn e f
app2 s (Syn p) (Syn q) = Syn (appt s [p, q])

With these utilities in hand, categorical operations come easily, e.g.,

instance Category Syn where
id = app0 "id"
(◦) = app2 "◦"

instance Cartesian Syn where
exl = app0 "exl"
exr = app0 "exr"
(△) = app2 "△"

instance Closed Syn where
apply = app0 "apply"
curry = app1 "curry"
uncurry = app1 "uncurry"

instance BoolCat Syn where
andC = app0 "andC"
orC = app0 "orC"
. . .

These “instances”, while useful for debugging, fail to satisfy the categorical axioms.

7.3 Products of Categories
Why give only one interpretation to a functional programwhenwe can give two, such as a graph and
the corresponding syntactic form?We could compile twice, each with a different target category, but
a more convenient and efficient alternative is to compile once to a product of categories. The arrows
of such a product is represented by an arrow from each category, acting completely independently:

infixl 7 ⊗
data (p ⊗ q) a b = p a b ⊗ q a b

Categorical operations simply combine the corresponding operations of each category, e.g.,

instance (Category k,Category k′) ⇒ Category (k ⊗ k′) where
type Ok (k ⊗ k′) a = (Ok k a,Ok k′ a)
id = id ⊗ id
(g ⊗ g′) ◦ (f ⊗ f ′) = (g ◦ f) ⊗ (g′ ◦ f ′)

instance (Cartesian k,Cartesian k′) ⇒ Cartesian (k ⊗ k′) where
exl = exl ⊗ exl
exr = exr ⊗ exr
(f ⊗ f ′) △ (g ⊗ g′) = (f △ g) ⊗ (f ′ △ g′)

...

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:12 Conal Elliott

As an identity for (⊗), there is a category with exactly one arrow for each domain/codomain
pair and trivial instances of Category, Cartesian, etc.

7.4 Linear Maps
Although we usually represent functions as code, sometimes we can use data instead. For linear
functions, one can instead use a very compact data representation. For instance, any linear function
from R2 to R3 can be represented as a matrix of six numbers. Moreover, since the identity function
is linear, and the composition of linear functions is linear, we have a category. For linearity to be
meaningful, we need vector space over a scalar field (or just a (semi)module over a (semi)ring).
There are various ways to formulate vector spaces over a scalar field s. A particularly elegant choice
is that of free vector spaces, each of which is isomorphic to the space of functions f :: A→ s from
some index set A. Rather than mapping to functions, however, we can use a memoized form for
these functions as tries, composed from some basic functor building blocks [Hinze 2000].

Conversion to and from (representable endo)functor form is managed by the following class:

class HasV s a where
type V s a :: ∗ → ∗ -- “vector form”
toV :: a→ V s a s
unV :: V s a s → a

Some instances:

instance HasV s 1 where
type V s 1 = U1
toV () = U1
unV U1 = ()

instance HasV Double Double where
type V Double Double = Par1
toV = Par1
unV = unPar1

instance (HasV s a,HasV s b) ⇒ HasV s (a × b) where
type V s (a × b) = V s a××× V s b
toV (a, b) = toV a××× toV b
unV (f ××× g) = (unV f , unV g)

The Par1, U1 and (×××) type constructors are identity functor, unit functor, and cartesian functor
product, taken from GHC.Generics [Magalhães et al. 2010; Magalhães et al. 2011]:

data U1 s = U1
data Par1 s = Par1 s
data (f ××× g) s = f g ××× g s

A linear map from a to b is represented by a vector of vectors, i.e., a “matrix”, in row-major form
(though we could as easily use column-major):

newtype a⊸s b = LMap (V s b (V s a s))

The categorical instances are as follows, with auxiliary definitions given in Appendix A:

instance Num s ⇒ Category (⊸s) where
type Ok (⊸s) a = (HasV s a,OkLF (V s a))

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:13

id = LMap idL
LMap g ◦ LMap f = LMap (g ‘compL‘ f)

instance Num s ⇒ Cartesian (⊸s) where
exl = LMap exlL
exr = LMap exrL
LMap g △ LMap f = LMap (g ‘forkL‘ f)

instance Num s ⇒ Terminal (⊸s) where
it = LMap U1

Linear map application is a functor from (⊸s) to (→), serving as a semantic function for (⊸s):

lapply :: (Ok2 (⊸s) a b,Num s) ⇒ (a⊸s b) → (a→ b)
lapply (LMap ba) = unV ◦ lapplyL ba ◦ toV

Conversely, given a function f :: a → b, we can construct a linear map f ′ :: a⊸s b such that
lapply f ′ ≡ f if f is linear:

linear :: (Ok2 (⊸s) a b,HasL (V s a),Num s) ⇒ (a→ b) → (a⊸s b)
linear h = LMap (linearL (toV ◦ h ◦ unV))

7.5 Automatic Differentiation
Next, let’s consider how to differentiate functions exactly. To handle multi-dimensional types,
assume that our functions map between free vector spaces over a common scalar field. In this
general setting, derivative values are linear maps [Elliott 2009; Spivak 1971]. We thus have the
following type for differentiation:

deriv :: (a→ b) → (a→ (a⊸s b))

Although deriv f is not computable from the function f , we can construct it homomorphically
from a categorical recipe for f by compiling to a suitable category. Consider the chain rule in terms
of derivatives as linear maps [Spivak 1971, Theorem 2-2]:

deriv (g ◦ f) a ≡ deriv g (f a) ◦ deriv f a

While the composition in the left side of the chain rule is on functions, the composition on the
right is on linear maps. The notion of derivatives as linear maps subsumes various representations
including scalar values, vectors, covectors, matrices, and higher dimensional counterparts. Likewise,
this one general chain rule subsumes many specific variations involving scalar multiplication, inner
products, outer products, matrix products, Hessians, etc.
Note that the derivative of g ◦ f depends not only on the derivatives of g and f , but also on g

itself, so deriv is not a functor. All is not lost though, as we can instead compositionally construct a
combination of functions and their derivatives. A straightforward pairing of the two leads to the
following representation of differentiable functions between vector spaces over a field s:

data a;s b = D (a→ b) (a→ (a⊸s b))) -- first try

This representation, however, prevents exploiting the considerable amount of computation that
functions and their derivatives typically have in common. Fortunately, there is a simple solution,
using the (△) isomorphism from Cartesian to combine functions and their derivatives:

data a;s b = D {unD :: a→ b × (a⊸s b) } -- allows work sharing

Our goal is to implement the following functor

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:14 Conal Elliott

andDeriv :: (a→ b) → (a;s b)
andDeriv f = D (f △ deriv f) -- specification

This combination forms a local affine (first order) approximation of f at every point in a. Once we
implement andDeriv faithfully to this specification, we will have a simple implementation of deriv:

deriv f = snd ◦ unD (andDeriv f)

Linear functions are trivial to differentiate, since they are their own (perfect) linear approxima-
tions. The following helper function takes a linear function and its linear map counterpart:5

linearD :: (Num s,Ok2 (⊸s) a b) ⇒ (a→ b) → (a⊸s b) → (a;s b)
linearD f f ′ = D (f △ const f ′)

Now we’re ready to define the Category instance for differentiable functions. The identity function
is linear, and composition follows from the chain rule:

instance Num s ⇒ Category (;s) where
type Ok (;s) a = Ok (⊸s) a
id = linearD id id
D g ◦ D f = D (λa→ let { (b, f ′) = f a; (c, g′) = g b } in (c, g′ ◦ f ′))

Product operations are handled similarly. For (△), we’ll need a counterpart to the chain rule:

deriv (f △ g) a = deriv f a △ deriv g a

Assembling the pieces,

instance Num s ⇒ Cartesian (;s) where
exl = linearD exl exl
exr = linearD exr exr
D f △ D g = D (λa→ let { (b, f ′) = f a; (c, g′) = g a } in ((b, c), f ′ △ g′))

Knowledge of derivatives for numerical operations lives in instances of NumCat, FloatingCat, etc:

instance (Num s,V s s ∼ Par1,Ok (⊸s) s) ⇒ NumCat (;s) s where
negateC = linearD negateC (linear negateC)
addC = linearD addC (linear addC)
mulC = D (mulC △ λ(a, b) → linear (λ(da, db) → da ∗ b + db ∗ a))

...

Figures 4 and 5 shows the result of andDeriv on the magSqr and cosSinProd examples from
Section 3. Because magSqr :: R2 → R, its derivative values have type R2 ⊸R R, represented by a
pair of reals. Because cosSinProd :: R2 → R2, its derivative values have type R2 ⊸R R

2, represented
by a pair of pairs of reals. Figures 6 and 7 shows the results of deriv on the same two examples.

The Category and Cartesian instances for (;s) rely on (⊸s) only for its instances of these same
classes. Thanks to this simple relationship, we can easily generalize from (⊸s) to an arbitrary
bicartesian category, re-specializing to (;s):

newtype GD k a b = D (a→ b × (a ‘k‘ b))
type (;s) = GD (⊸s)

The instances for GD k are as they were for D above, except for adding the properties required of k:
5One could compute either the function or the map from the other, using lapply or linear above, but the two-argument
linearD allows for a useful generalization below.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:15

+

Out

+

+

In

×

×

Fig. 4. andDeriv magSqr

In

×

×

×

×

×

Out cos

 negate

 sin

Fig. 5. andDeriv cosSinProd

+

Out

+

In

Fig. 6. deriv magSqr

In

×

×

×

×

×

Out
 cos

 negate sin

Fig. 7. deriv cosSinProd

instance Category k ⇒ Category (GD k) where ...
instance Cartesian k ⇒ Cartesian (GD k) where ...

7.6 Incremental Computation
When a function is applied to the same argument twice, it performs the same work, unless the
function is memoized. When a function is applied to two similar arguments, memoization is no
help, and the second application must start from scratch even though some of the work may be
repeated between the two applications. The idea of incremental computation (IC) is to make a small
amount of extra effort on the first invocation so that invocations on similar arguments may be
done incrementally and thus inexpensively.

To formulate IC, define an interface for incremental value changes, mimicking Cai et al. [2014]:

infixl 6 ⊖, ⊕
class HasDelta a where

type ∆ a
(⊕) :: a→ ∆ a→ a
(⊖) :: a→ a→ ∆ a
0 :: ∆ a

The unit type has a trivial instance, since there can be no changes; a change for pairs is a pair
of changes; and a change for functions is a function to changes. Atomic types can be handled in
various ways, including simply a Maybe giving a new value if changed.

A change morphism says how to map changes to changes:

newtype DelX a b = DelX (∆ a→ ∆ b)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:16 Conal Elliott

It’s easy to then give Category and Cartesian instances for DelX :
instance Category DelX where

type Ok DelX = HasDelta
id = DelX id
DelX g ◦ Del f = Del (g ◦ f)

instance Cartesian DelX where
exl = DelX exl
exr = DelX exr
DelX f △ Del g = Del (f △ g)

Since DelX is a cartesian functor, we can use it with generalized automatic differentiation to get a
category of incremental computation:

type Inc = GD DelX

7.7 Interval Analysis
Interval analysis (IA) is a technique for computing bounds on functions, mapping domain intervals
to codomain intervals [Moore 1966], with applications including root finding, minimization, and
error management. Given a function f , a corresponding interval function f̂ has the property that
for any domain interval I , ∀x ∈ I . f x ∈ f̂ I . The compositional nature of IA makes it a natural
fit for a categorical interface. Different types have different interval representations, with atomic
values having lower and upper bound, while product intervals are products of intervals (“boxes”),
and function intervals are functions between intervals:

data IFun a b = IFun (Interval a→ Interval b)

type family Interval a

type instance Interval Double = Double × Double
type instance Interval Int = Int × Int
type instance Interval (a × b) = Interval a × Interval b
type instance Interval (a→ b) = Interval a→ Interval b

Instances for the basic category classes are as simple as can be:
instance Category IFun where

id = IFun id
IFun g ◦ IFun f = IFun (g ◦ f)

instance Cartesian IFun where
exl = IFun exl
exr = IFun exr
IFun f △ IFun g = IFun (f △ g)

instance Closed IFun where
apply = IFun apply
curry (IFun f) = IFun (curry f)
uncurry (IFun g) = IFun (uncurry g)

instance Interval b ∼ (b × b) ⇒ ConstCat IFun b where
unitArrow b = IFun (unitArrow (b, b))

The real work is done in numeric operations:

instance (Interval a ∼ (a × a),Num a,Ord a) ⇒ NumCat IFun a where
addC = IFun (λ((alo, ahi), (blo, bhi)) → (alo + blo, ahi + bhi))
mulC = IFun (λ((alo, ahi), (blo, bhi)) → let cs = [alo ∗ blo, alo ∗ bhi, ahi ∗ blo, ahi ∗ bhi] in

(minimum cs,maximum cs))
...

7.8 Other Examples
Kmett [2011] shows how to form a simple cartesian category of entailments between Haskell’s
type constraints. The natural formulation of this category has kind Constraint → Constraint → ∗,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:17

relying on the poly-kinded generalization mentioned in Section 12. (It can be encoded somewhat
less directly via values that can be converted to and from constraint dictionaries, similarly to
the conversion to and from functor representations of linear maps in Section 7.4). This category
is useful for boosting the power of GHC’s type inference, particularly to overcome the lack of
universally quantified constraints. Other deductive systems may be possible as well, including
disjunction (coproduct) and implication (exponential).

Just as linear maps form a (bi)cartesian category, so do polynomials (including product domains
and ranges). As long as one uses only addition and multiplication as primitives, functional programs
can be compiled into polynomials, which can then be analyzed efficiently and exactly, finding
roots, minima and maxima, derivatives, and integrals, as well as evaluated efficiently in parallel
using parallel prefix algorithms [Blelloch 1990; Elliott 2017]. Power series (infinite polynomials)
can probably be treated the same way (allowing operations beyond addition and multiplication),
perhaps using the operations elegantly defined by McIlroy [1999].

8 COCARTESIAN AND DISTRIBUTIVE CATEGORIES
Although not used in the examples of this paper, another common and useful concept is that of
cocartesian categories. The interface is exactly dual to that of Cartesian, with sums in place of
cartesian products, having two introduction and one elimination operation:
infixr 2 ▽
class Category k ⇒ Cocartesian k where
inl :: Ok2 k a b ⇒ a ‘k‘ (a + b)
inr :: Ok2 k a b ⇒ b ‘k‘ (a + b)
(▽) :: Ok3 k a c d
⇒ (c ‘k‘ a) → (d ‘k‘ a) → ((c + d) ‘k‘ a)

instance Cocartesian (→) where
inl = Left
inr = Right
(f ▽ g) (Left a) = f a
(f ▽ g) (Right b) = g b

The universal property is also dual to that of Cartesian:

∀h. h ≡ f ▽ g ⇐⇒ h ◦ inl ≡ f ∧ h ◦ inr ≡ g

Again, details are adopted from Gibbons [2002]. As with products, it will be useful to generalize the
notion of coproducts beyond sum types. A “bicartesian” category is both cartesian and cocartesian.

A distributive category is one that enables distribution of products over coproducts:
class (Cartesian k,Cocartesian k) ⇒ Distrib k where
distl :: Ok3 k a u v

⇒ (a × (u + v)) ‘k‘ (a × u + a × v)
distr :: Ok3 k a u v

⇒ (a × u + a × v) ‘k‘ (a × (u + v))

instance Distrib (→) where
distl (a, Left u) = Left (a, u)
distl (a, Right v) = Right (a, v)
distr (Left u, b) = Left (u, b)
distr (Right v, b) = Right (v, b)

We can define either distl or distr in terms of the other (exercise), so only one need be primitive.
Distributive categories enable translation of definition by cases. Consider only case over binary

sums a + b for now. Other multi-constructor data types will be translated into binary sums, as
described in Section 9. Transform such expressions (in context) as follows:

(λx → case scrut of {Left u → U ; Right v → V }) ≡ (λx → (U ▽ V) scrut)

We already know how to handle applications under an outer abstraction. For the rest,

(λx → U ▽ V) ≡ curry ((uncurry (λx → U) ▽ uncurry (λx → V)) ◦ distl)

The proof is left as an exercise.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:18 Conal Elliott

9 NON-STANDARD TYPES
So far, we’re only handling “standard” types, i.e., primitive types like 1, Bool, Int, and Double, along
with products of standard types and functions between standard types. In practice, most programs
also involve algebraic data types. Such “non-standard” types are always isomorphic to standard
types. To assist with these isomorphisms, define a class of types with alternative representations.
Rather than go all the way to and from standard types in one step, take just a single step at a time:

class HasRep a where -- Law: abst ◦ repr ≡ id
type Rep a
repr :: a→ Rep a
abst :: Rep a→ a

For instance, for a uniform pair type data Pair a = P a a,

instance HasRep (Pair a) where
type Rep (Pair a) = a × a
repr (P a a′) = (a, a′)
abst (a, a′) = P a a′

The key to translating non-standard types is observing that (a) they are constructed in exactly
one way, namely constructor application, and (b) they are consumed in exactly one way, namely
as the scrutinee of a case expression. (Haskell’s lambda and let patterns become simple variable
lambda and let, together with case expressions in GHC Core.) Constructor application becomes
abst applications, and case consumption becomes repr applications, both by means of the abst ◦repr
law above and some selective inlining.

Given a saturated constructor applicationCon e1 ...en, rewrite it to abst (inline repr (Con e1 ...en)),
where inline e tells GHC’s simplifier to inline the expression e.6 GHC’s usual simplifications then
eliminate the constructor, leaving only abst behind. For example,

P 3 4
≡ {- abst ◦ repr ≡ id -}
abst (inline repr (P 3 4))
≡ {- inline repr -}
abst ((λp → case p of P a a′ → (a, a′)) (P 3 4))
≡ {- β-reduce -}
abst (let p = P 3 4 in case p of P a a′ → (a, a′))
≡ {- let-substitute -}
abst (case P 3 4 of P a a′ → (a, a′))
≡ {- GHC’s case-of-known-constructor transformation -}
abst (3, 4)

Dually, consider a case expression case scrut of {p1 → rhs1; ...; pn → rhsn }, where (the scrutinee)
scrut has a non-standard type with a HasRep instance. Rewrite scrut to inline abst (repr scrut) (this
time inlining abst instead of repr). GHC’s usual simplifications will then replace the case over a
non-standard type with a case over a standard type or one closer to standard. For instance,

case p of P x y → x + y
≡ {- abst ◦ repr ≡ id -}

6A “saturated” constructor application is one that is applied to the maximal number of arguments, or equivalently, one that
has a non-function type. Unsaturated constructor applications can be η-expanded until saturated.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:19

case inline abst (repr p) of P x y → x + y
≡ {- inline abst -}
case (λq → case q of (a, a′) → P a a′) (repr p) of P x y → x + y
≡ {- β-reduce and let-substitute -}
case (case repr p of (a, a′) → P a a′) of P x y → x + y
≡ {- GHC’s case-of-case transformation -}
case repr p of (a, a′) → case P a a′ of P x y → x + y
≡ {- GHC’s case-of-known-constructor transformation -}
case repr p of (a, a′) → let {x = a; y = a′ } in x + y
≡ {- let-substitute -}
case repr p of (a, a′) → a + a′

These two transformations occur only in the context “ccc (λx → ...)”. The remaining occurrences
of abst (for construction) and repr (for consumption) become part of the categorical vocabulary as
a generalization of HasRep:
class HasRep a⇒ RepCat k a where
reprC :: a ‘k‘ Rep a
abstC :: Rep a ‘k‘ a

instance HasRep a⇒ RepCat (→) a where
reprC = repr
abstC = abst

During conversion to categorical form (as in Section 3), repr and abst are replaced by their general-
izations reprC and abstC. When changing categories (as in Section 4), the occurrences of reprC and
abstC in (→) are replaced by the same methods in another category.

Multi-constructor algebraic data types pose no additional difficulty. Their Rep encodings involve
sums (and often products as well), and GHC’s case-of-case and case-of-known-constructor transfor-
mations handle the resulting multi-branch case expressions. Conversion to categories other than
(→) requires support for cocartesian categories, adding coproducts, as well as distributive categories,
as described in Section 8.

As an example, the Graph category in Section 7.1 handles non-standard types via an additional
Ports constructor:

data Ports :: ∗ → ∗ where
...

AbstP :: Ports (Rep a) → Ports a

The RepCat methods add and remove AbstP ports:

instance HasRep a⇒ RepCat Graph a where
abstC = Graph (λr → return (AbstP r))
reprC = Graph (λ(AbstP r) → return r)

Elliott [2017] showed many examples with non-standard types compiled to Graph.

10 SOME IMPLEMENTATION ISSUES
10.1 Unboxed Operations
Performance of numeric operations under GHC is considerably improved by using unboxed number
representations inside of boxed wrappers [Peyton Jones and Launchbury 1991]. For instance, the
(boxed) Int type is defined as a wrapping of an unboxed field:

data Int = I Int#

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:20 Conal Elliott

Numerical operations on Int are then defined to unwrap (unbox) arguments, apply unboxed
operations on the contents, and rewrap (rebox) the unboxed results:

instance Num Int where
fromInteger i = I# (integerToInt# i)
negate (I# x) = I# (negateInt# x)
I# x + I# y = I# (x +# y)
I# x − I# y = I# (x −# y)
I# x ∗ I# y = I# (x ∗# y)

When boxed operations are combined, inlined, and optimized, most unwrapping and rewrapping
code is eliminated, thanks to the GHC’s case-of-known-constructor optimization. For instance, for
variables a, b :: Int the expression “a + 3 ∗ b” optimizes to the following:

case a of I# x → case b of I# y → I# (x +# 3# ∗# y)

Even recursive definitions involving numbers can be handled efficiently, via the general worker
wrapper transformation [Gill and Hutton 2009].

Although unboxing speeds up execution of Haskell programs with the usual interpretation
(the (→) category), it complicates conversion to categorical form and hence compiling to other
categories. Recall the signatures involved in the generalized Num class:

class NumCat k a where
addC, subC,mulC :: (a × a) ‘k‘ a
...

While these methods are polymorphic over number type/object, the polymorphism is implicitly
restricted to kind ∗, i.e., boxed types. The original boxed versions of addition and multiplication
used in our example above have disappeared from the optimized form and must be recovered in
order to satisfy the implicit kind restriction (or some other boxed form, which is probably no easier).
After much experimentation, a simple solution to reboxing emerged. The first step is to find

applications of constructors like I#, such as I# (x +# 3# ∗# y) in the optimized example above. Replace
those outer constructors with a synonym defined as follows:

boxI :: Int# → Int
boxI = I#
{-# INLINE [0] boxI #-}

The INLINE pragma causes these synonyms to be replaced by their original constructors only at
the end of compilation (phase zero) if any still exist (which happens with constant expressions).
The example above becomes

case a of I# x → case b of I# y → boxI (x +# 3# ∗# z)

The boxing synonyms trigger cascaded application of step-by-step reboxing rewrite rules such as
the following:

∀u. boxI (negateInt# u) = negateC (boxI u)
∀u v. boxI (u +# v) = addC (boxI u, boxI v)
∀u v. boxI (u −# v) = subC (boxI u, boxI v)
∀u v. boxI (u ∗# v) = mulC (boxI u, boxI v)

Introducing category-generalized names rather than the usual versions ((+), (∗), etc) in these rules
avoids having GHC’s simplifier re-inline the usual versions back into unboxed form. Note here

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:21

how the reboxing rules push boxI applications inward as long as there are unboxed operations
being applied. This recursive transformation ends in literals and variables. Our example becomes

case a of I# x → case b of I# y → addC (boxI x,mulC (boxI 3#, boxI y))

One more transformation eliminates the unboxing case scrutinees: transform an expression like
“case a of I# x → ...boxI x ...” to “let x ′ = a in ... x ′...”. By applying the previous transformations
(converting boxing constructors and recursive reboxing) before this unboxing scrutinee elimination,
all occurrences of x will be of the form boxI x, so no unboxed variables remain. The let bindings
are removed by GHC’s simplifier unless doing so replicates nontrivial work. After all of these
transformations, our example involves only (a) numeric operations in category-generalized form,
(b) variables of boxed types, and (c) boxing synonyms applied to unboxed literals:

addC (a,mulC (boxI 3#, b))

10.2 Translation without Closure
Some categories are cartesian but not cartesian closed, e.g., vector spaces with linear maps. Most
of the rules for converting to CCC form rely on closure, which poses a problem for non-closed
categories. If, however, the overall function being converted does not involve functions in its
domain or codomain, then the corresponding closure-dependent CCC form can often (or perhaps
always) be converted to a form free of the Closed operations (apply, curry, and uncurry)—assuming
that none of the primitive operations (addC, mulC, eq, etc) involve exponentials in their types
either (which seems a harmless restriction). An easy way to eliminate the Closed operations is
by converting first to CCC form in the (→) category (which is closed) as suggested in Section 3,
applying some rewrite rules that follow from general category laws, and then homomorphically
converting to the desired non-closed category, as suggested in Section 4. (For cartesian closed
categories, compilation can take a more direct route of fusing the vocabulary change with the
category change, although homomorphism application is fairly simple and inexpensive.) These
closure-eliminating rules include the following:

∀f . uncurry (curry f) = f
∀g. curry (uncurry g) = g
∀g f . apply ◦ (curry (g ◦ exr) △ f) = g ◦ f

10.3 Postponing Inlining
In the current GHC (8.0.2), class methods are always inlined early. This behavior, if not somehow
avoided would have some unfortunate consequences:
• The reboxing rewrite rules of Section 10.1 would get undone immediately, through inlining
and subsequent simplification, leading to an infinite transformation loop.
• Homomorphism rules (the heart of transforming to non-standard interpretations, outlined in
Section 3) would never fire, since they are written in terms of class methods.
• For the same reason, simplification rules that apply category theory laws would never fire.

Fortunately, there is a simple and effective work-around for premature method inlining. All cat-
egorical class methods have corresponding late-inlining aliases with the same names but placed
in a dedicated module, along with rewrite rules involving them. Conversion to categorical form
(Section 3) uses these aliases instead of the module that defines the classes and methods. If a future
version of GHC allows delayed method inlining, the aliases can be removed.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:22 Conal Elliott

11 RELATEDWORK
The Categorical Abstract Machine (CAM) is an execution model for terms from the language of
cartesian closed categories [Cousineau et al. 1987], emerging from the categorical combinators
of Curien [1986], and used as the basis of an implementation of the Caml dialect and of the ML
programming language [Weis et al. 2005]. Like the work described in this paper, the CAM is based
on CCCs and its relation to the λ-calculus. It does not appear to have been used to give multiple
CCC-based interpretations (each with its own semantics and notion of execution).

There has been a lot of work in describing and synthesizing hardware via functional programming,
beginning with muFP [Sheeran 1984], which was based on FP [Backus 1978] (close to the language
of cartesian categories), extended with streams for synchronous circuits. The muFP language was
followed by Ruby, adding a relational perspective [Jones and Sheeran 1990], and then by Lava
[Bjesse et al. 1998], which was embedded in Haskell. This very fruitful line of research has focused
on describing hardware but also explored elegant expression of hardware-friendly algorithms.

CλaSH is a compiler from Haskell to hardware, also using GHC as a front end and also working
by successive program transformation [Baaij and Kuper 2014]. Like the work in this paper, CλaSH
compiles a somewhat restricted form of Haskell rather than being a Haskell library implemented
as a deep or shallow embedding. Unlike the present paper, CλaSH only compiles to hardware.
Cai et al. [2014] describes how to convert a typed λ-calculus into an incremental version by a

process very similar to differentiation. That work informed the incremental CCC of Section 7.6 as
another instance of a generalized differentiation CCC, which may have other useful specializations
as well (in addition to differential calculus). Also related is the work on self-adjusting computation
in a functional setting [Acar 2005; Acar et al. 2005] and the monadic/applicative formulation in
Haskell [Carlsson 2002]. Both require using a supporting library, with considerable impact of
programming style.
Automatic differentiation (AD) has a long and rich history dating back to Wengert [1964] and

including modern, functional formulations [Elliott 2009; Karczmarczuk 1998]. Siskind and Pearlmut-
ter [2005, 2008] suggest that it is difficult and perhaps impossible to give a correct implementation
of AD in purely functional languages such as Haskell, in particular pointing out the danger of
“perturbation confusion” when nesting the differentiation operator. The technique in this paper
used with the AD CCC given in Section 7.5 side-steps these difficulties by providing a correctly
implemented differentiation operator by means of compile-time transformation. It also does not
appear to fall naturally into the usual classification of forward vs reverse vs mixed modes, although
perhaps it could become any of those modes by applications of the associativity law for composition.

Cartesian categories are closely related to arrows [Hughes 1998], but the latter’s inclusion of arr
(with roughly the the same signature as the ccc pseudo-function of Section 5) precludes instances
for many cartesian categories.

12 FUTUREWORK
There are several possible improvements to the scheme described in this paper:

• The categorical classes have fixed versions of product, unit, exponential, coproduct, etc. We
can gain much useful flexibility by replacing these fixed type constructions with associated
types [Chakravarty et al. 2005a,b]. For instance, linear maps and polynomials have a “direct
sum” coproduct whose representation is the cartesian product rather than a sum (tagged
union). The types managed by the compiler plugin become somewhat more complicated, but
it seems quite doable, and work is in progress.
• The types involved in categorical operations are restricted to having kind ∗. The only reason
for this restriction is the fixed versions of product, unit, etc. Once those types are generalized,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:23

they can easily become poly-kinded [Hinze 2004; Yorgey et al. 2012]. For instance, the functor
versions of linear map representation and operations in Appendix A form a cartesian category,
using functor product as the associated categorical product. A related example is the category
of natural transformations.
• Implemented as described above, compilation to categories is costly for large computations,
with a great deal of inlining, simplification, translation to CCC form, and conversion to
alternative categories. When a top-level definition is used more than once, this processing
occurs redundantly. Within a given compilation run, perhaps some sort of memoization
can be done to reuse work, but the same issue exists between successive compilations
and across many modules. An earlier implementation of compiling to categories applied
an effective and fairly simple form of separate compilation. For each top-level binding
f @v1 ... @vn = rhs (where v1, ..., vn are type variables), the compiler plugin generated a
rewrite rule ccc (f @v1 ... @vn) = ccc rhs. The right-hand side of this rule simplifies to some
term rhs′, often containing residual ccc applications due to polymorphism. Later, when a type
instance ccc (f @τ1 ... @τn) is encountered (for types τ1, ...,τn, possibly containing other
type variables), including in a different module, GHC’s simplifier would find and apply the
generated rule, substituting τ1, ...τn for v1, ...vn in rhs′, and then continue, making further
progress with the unfinished transformation. This experiment in separate compilation worked
because the earlier plugin supported only a single CCC, namely Graph from Section 7.1. It
is not so clear how to adapt this scheme to support multiple categories, including ones not
yet defined when a library module is compiled, since translation depends on the instances
available for a particular target category.
• In the presence of recursive definitions, repeated inlining and simplification can easily cause
the compiler not to terminate. Fortunately, recursion is explicit in GHC Core, so it is easy for
a compiler plugin to notice and handle with care. It may thus be possible to translate to a
categorical interface for fixed points [Barr 1990; Mulry 1990; Simpson and Plotkin 2000], to
then be interpreted in different categories.

Considering the broad applicability of category theory, it seems likely that the applications given
in this paper barely skim the surface of the interesting and useful interpretations of functional
programs made possible by compiling to categories.

13 CONCLUSIONS
The method described in this paper constitutes a new angle on domain-specific embedded languages
(DSELs) and provides a compelling alternative to the “deep embedding” technique often used to
enable analysis and optimization [Boulton et al. 1993; Elliott et al. 2003; Gibbons and Wu 2014;
Gill 2014]. In deep embeddings, a DSEL/library implementation includes a syntactic representation
to be manipulated by the library (at its run time), in addition to the host compiler’s syntactic
representation (GHC Core). Sharing is lost and must be rediscovered by some form of common
subexpression elimination (CSE), an awkward and expensive phase to define in a purely functional
language like Haskell [Claessen and Sands 1999; Elliott et al. 2003; Gill 2009]. The library imple-
mentation generally also includes various optimizations on its syntactic representation for the sake
of performance, as well as some form of back-end code generation. In these ways, a deep DSEL
implementation replicates much of the work of its host compiler, making such implementations
difficult, and rarely as high-quality as a host language compiler such as GHC.
In spite of all the effort required, the programming interface of a deep DSEL still has some

shortcomings. Instead of manipulating simple values such as Bool and Int directly, one must operate
on some sort of expression type. This fact can be partially hidden by means of overloading, e.g., via

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:24 Conal Elliott

instances of the numeric classes. Some operations, however, have insufficiently flexible types for
the required overloading, such as equality and inequalities, as well as if ... then ... else. Additional
efforts can hide more of these symptoms, but the cracks still show, and each new coping mechanism
leads to increasingly mysterious type errors. Moreover, deep embeddings cannot support definition-
by-cases—a commonly used style in functional programming.

The compiling-to-categories technique described in this paper avoids the shortcomings of shallow
and deep embeddings. Unlike shallow embeddings, we can get static analysis—even inside of
functions—including aggressive optimization. Unlike deep embeddings, one uses Haskell’s standard
types and notation (directly and without compromise), gets the full power of the host compiler for
optimization, and sees the usual type error messages. Moreover, much implementation work is
saved. There is no additional syntactic representation to define, and sharing needn’t be recovered,
since it is never lost. While the compiler plugin implementation is non-trivial, working with internal
compiler representations, it is done once per host compiler (e.g., GHC) rather than per DSEL.
The technique described in this paper has been illustrated in terms of Haskell and its compiler

GHC, but it could be applied to other languages and compilers as well. A few properties of GHC
have been particularly helpful:

• The whole source language reduces to a small core typed λ-calculus [Sulzmann et al. 2007].
• Optimization mainly comprises transformations on this core language [Peyton Jones 1996].
• The set of such transformations is extensible by a compiler plugin [GHC Team 2016]. (Given
the generality of the needed additional transformations, however, one might build them into
an existing compiler instead of writing a plugin. Doing so would require coordination with
and support from the compiler’s implementors, maintainers, and community.)

As for language features, type classes are very useful as a way to package the required in-
terfaces (Category, Cartesian, NumCat, etc) as well as their specific definitions for alternative
interpretations/categories. Especially important here is that these interpretations are defined in
familiar-looking source code entirely outside of the compiler and plugin, making it easy to add new
interpretations, such as those of Section 7, without any knowledge of compiler internals (including
the existence or particulars of GHC Core).

A LINEAR MAP DETAILS
The linear map category in Section 7.4 is based on free vector spaces (or modules or semimodules)
over a scalar s, as representable functors, i.e., functors isomorphic to A→ s for some type A. For
instance, the vector space R2 over R is represented as a Pair R, where Pair is a uniform pair functor,
which is isomorphic to Bool → R. This representation enables simple and general definitions of
“vector” operations, e.g.,

scaleV :: (Functor f ,Num s) ⇒ s → f s → f s -- Scale a vector
s ‘scaleV ‘ v = (s ∗) <$> v

addV :: (Zip f ,Num s) ⇒ f s → f s → f s -- Add vectors
addV = zipWith (+)

dotV :: (Zip f , Foldable f ,Num s) ⇒ f s → f s → s -- Dot product
x ‘dotV ‘ y = sum (zipWith (∗) x y)

zeroV :: (Pointed f ,Num a) ⇒ f a -- Zero vector
zeroV = point 0

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

Compiling to Categories 27:25

The Pointed class has one method point :: s → f s that fills a structure with a given value. The Zip
class provides zipWith :: (s → t → u) → f s → f t → f u for combining structures element-wise.
These operations can be generalized easily and usefully from Num to semirings.

A functor version of linear maps from a s to b s in row-major form (though column-major can
work as well):

infixr 1 −−•
type (a −−• b) s = b (a s)

To apply a linear map as :: b (a s) to a vector a :: a s, form the inner product of each row in as with a:

lapplyL :: (Zip a, Foldable a,Zip b,Num s) ⇒ (a −−• b) s → a s → b s
lapplyL as a = (‘dotV ‘ a) <$> as

The identity and composition for this linear map representation are fairly simple:

idL :: (Diagonal a,Num s) ⇒ (a −−• a) s
idL = diag 0 1
compL :: (Zip a,Zip b, Pointed a, Foldable b, Functor c,Num s)

⇒ (b −−• c) s → (a −−• b) s → (a −−• c) s
bc ‘compL‘ ab = (λb → sumV (zipWith scaleV b ab)) <$> bc

The Diagonal class has diag :: s → s → f (f s), with diag z o having o (“one”) on the diagonal and
z (“zero”) elsewhere. While idL and compL are used in the Category instance in Section 7.4, the
following three are used in the Cartesian instance:

exlL :: (Pointed a,Diagonal a, Pointed b,Num s) ⇒ (a××× b −−• a) s
exlL = (××× zeroV) <$> idL

exrL :: (Pointed b,Diagonal b, Pointed a,Num s) ⇒ (a××× b −−• b) s
exrL = (zeroV ×××) <$> idL

forkL :: (a −−• b) s → (a −−• c) s → (a −−• b ××× c) s
forkL = (×××)

Finally, the function linearL that converts from a function (presumably linear) to the functor
representation of linear maps:

class OkLF f ⇒ HasL f where
linearL :: ∀s g.(Num s,OkLF g) ⇒ (f s → g s) → (f −−• g) s -- Law: linearL ◦ lapplyL ≡ id

instance HasL U1 where linearL h = const U1 <$> h U1

instance HasL Par1 where linearL h = Par1 <$> h (Par1 1)

instance (HasL f ,HasL g) ⇒ HasL (f ××× g) where
linearL h = zipWith (×××) (linearL (h ◦ (××× zeroV))) (linearL (h ◦ (zeroV ×××)))

The constraint used in defining Ok (⊸s) conjoins required class constraints:

type OkLF a = (Foldable a, Pointed a,Zip a,Diagonal a)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

27:26 Conal Elliott

ACKNOWLEDGMENTS
Steve Teig first suggested to me the project of compiling Haskell to (dynamically reprogrammable)
hardware, which was the main focus of my work at Tabula. I’m grateful to Steve for inspiration,
support, and many conversations during the first phase of this work. Anshul Malvi implemented the
graph-to-Verilog translation (also at Tabula). The Kansas University Haskell folks, especially Andrew
Farmer and Andy Gill, helped me considerably with their HERMIT system [Farmer et al. 2012;
Sculthorpe et al. 2013b], on which earlier implementations of the Haskell-to-hardware plugin were
built. Simon Peyton Jones suggested structuring the compiler plugin as a “built-in” GHC rewrite
rule. Tim Sears has provided helpful discussions, encouragement, and suggestions throughout the
project. Finally, my thanks to Target, for supporting continued development.

REFERENCES
Umut Acar. Self-adjusting computation. PhD thesis, School of Computer Science, Carnegie Mellon University, May 2005.
Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Robert Harper. Self-adjusting programming. In ML Workshop, 2005.
Steve Awodey. Category theory, volume 49 of Oxford Logic Guides. Oxford University Press, 2006.
Christiaan Baaij and Jan Kuper. Using rewriting to synthesize functional languages to digital circuits. In Trends in Functional

Programming, Lecture Notes in Computer Science, pages 17–33, 2014.
John Backus. Can programming be liberated from the von Neumann style? A functional style and its algebra of programs.

Communications of the ACM, 21(8):613–641, August 1978.
Michael Barr. Fixed points in cartesian closed categories. Theoretical Computer Science, 70(1):65–72, 1990.
Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware design in Haskell. In ICFP, 1998.
Guy E. Blelloch. Prefix Sums and Their Applications. Technical Report CMU-CS-90-190, School of Computer Science,

Carnegie Mellon University, November 1990.
Max Bolingbroke. Constraint kinds for GHC. http://blog.omega-prime.co.uk/?p=127, 2011.
Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John Herbert, and John Van Tassel. Experience with

embedding hardware description languages in HOL. In Proceedings of the IFIP TC10/WG 10.2 International Conference on
Theorem Provers in Circuit Design: Theory, Practice and Experience, volume A-10, pages 129–156, 1993.

Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of changes for higher-order languages:
incrementalizing λ-calculi by static differentiation. In PLDI ’14, pages 145–155, 2014.

Magnus Carlsson. Monads for incremental computing. In ICFP, pages 26–35, 2002.
Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. Associated type synonyms. In ICFP, 2005a.
Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and Simon Marlow. Associated types with class. In

Principles of Programming Languages, 2005b.
Mark Chu-Carroll. Interpreting lambda calculus using closed cartesian categories. http://goodmath.scientopia.org/2012/03/

11/interpreting-lambda-calculus-using-closed-cartesian-categories/, March 2012.
Koen Claessen and David Sands. In Asian Computing Science Conference, 1999.
Guy Cousineau, Pierre-Louis Curien, andMichel Mauny. The categorical abstract machine. Science of Computer Programming,

8, 1987.
Pierre-Louis Curien. Categorical combinators. Information and Control, 69(1-3):188–254, 1986.
Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Theory and Practice of Software, International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.
Conal Elliott. Programming graphics processors functionally. In Haskell Workshop, 2004.
Conal Elliott. Beautiful differentiation. In International Conference on Functional Programming, 2009.
Conal Elliott. Generic functional parallel algorithms: Scan and FFT. Proc. ACM Program. Lang., 1(ICFP), September 2017.
Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded languages. Journal of Functional Prog., 13(2), 2003.
Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe. The HERMIT in the machine: A plugin for the interactive

transformation of GHC core language programs. Haskell Symposium, pages 1–12, 2012.
GHC Team. The Glorious Glasgow Haskell compilation system user’s guide, version 8.0.1. https://downloads.haskell.org/

~ghc/latest/docs/html/users_guide, 2016.
Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods in the Mathematics of Program

Construction, volume 2297 of Lecture Notes in Computer Science. Springer-Verlag, 2002.
Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: Deep and shallow embeddings. In ICFP, 2014.
Andy Gill. Type-safe observable sharing in Haskell. In Haskell Symposium, pages 117–128, September 2009.
Andy Gill. Domain-specific languages and code synthesis using Haskell. ACM Queue, 12(4), April 2014.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

http://www.umut-acar.org/publications/umut-thesis.pdf
https://www.cs.cmu.edu/~rwh/papers/sap/mlw05.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.938.6728
https://www.thocp.net/biographies/papers/backus_turingaward_lecture.pdf
http://www.math.mcgill.ca/barr/papers/dom.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.1626
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.128.6230
http://blog.omega-prime.co.uk/?p=127
http://www.cl.cam.ac.uk/~jrh13/papers/EmbeddingPaper.html
http://www.cl.cam.ac.uk/~jrh13/papers/EmbeddingPaper.html
https://arxiv.org/abs/1312.0658
https://arxiv.org/abs/1312.0658
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.8.3014
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.646.7233
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.5121
http://goodmath.scientopia.org/2012/03/11/interpreting-lambda-calculus-using-closed-cartesian-categories/
http://goodmath.scientopia.org/2012/03/11/interpreting-lambda-calculus-using-closed-cartesian-categories/
http://www.sciencedirect.com/science/article/pii/0167642387900207
https://www.researchgate.net/publication/225142568_Z3_an_efficient_SMT_solver
http://conal.net/papers/Vertigo/
http://conal.net/papers/beautiful-differentiation
http://conal.net/papers/generic-parallel-functional
http://conal.net/papers/jfp-saig/
http://ku-fpg.github.io/papers/Farmer-12-HERMITinMachine/
http://ku-fpg.github.io/papers/Farmer-12-HERMITinMachine/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/acmmpc-calcfp.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.432.1702
http://ku-fpg.github.io/practice/observablesharing/
https://queue.acm.org/detail.cfm?id=2617811

Compiling to Categories 27:27

Andy Gill and Graham Hutton. The worker/wrapper transformation. Journal of Functional Prog., pages 227–251, 2009.
Ralf Hinze. Memo functions, polytypically! In Workshop on Generic Programming, pages 17–32, 2000.
Ralf Hinze. Fun with phantom types. In The fun of programming. Palgrave, 2003.
Ralf Hinze. Polytypic values possess polykinded types. In Science of Computer Programming, pages 2–27, June 2004.
John Hughes. The design of a pretty-printing library. In Advanced Functional Programming, pages 53–96, 1995.
John Hughes. Generalising monads to arrows. Science of Computer Programming, 37:67–111, 1998.
John Hughes and Simon Peyton Jones. The pretty package. https://hackage.haskell.org/package/pretty, November 2007.

Haskell library.
Geraint Jones and Mary Sheeran. Circuit design in Ruby. Formal methods for VLSI design, 1, 1990.
Mark P. Jones. Dictionary-free overloading by partial evaluation. In In ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, pages 107–117, 1994.
Jerzy Karczmarczuk. Functional differentiation of computer programs. In ICFP, pages 195–203, 1998.
Edward Kmett. What constraints entail: Part 1. http://comonad.com/reader/2011/what-constraints-entail-part-1/, 2011.
Joachim Lambek. From λ-calculus to cartesian closed categories. In J.P. Seldin and J.R. Hindley, editors, To H.B. Curry:

Essays on Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, 1980.
Joachim Lambek. Cartesian closed categories and typed lambda-calculi. In Thirteenth Spring School of the LITP on Combinators

and Functional Programming Languages, pages 136–175, 1986.
F. William Lawvere and Stephen H. Schanuel. Conceptual Mathematics: A First Introduction to Categories. Cambridge

University Press, 2nd edition, 2009.
Daan Leijen and Erik Meijer. Domain specific embedded compilers. In Conference on Domain-Specific Languages, pages

109–122, 1999.
José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic deriving mechanism for Haskell. In Haskell

Symposium, pages 37–48, 2010.
José Pedro Magalhães et al. GHC.Generics, 2011. URL https://wiki.haskell.org/GHC.Generics. Haskell wiki page.
M. Douglas McIlroy. Power series, power serious. Journal of Functional Programming, 9(3):325–337, 1999.
R.E. Moore. Interval analysis. Series in automatic computation. Prentice-Hall, 1966.
Philip S. Mulry. Categorical fixed point semantics. Theoretical Computer Science, 70(1):85–97, January 1990.
Simon Peyton Jones and John Launchbury. Unboxed values as first class citizens in a non-strict functional language. In

Functional programming languages and computer architecture, pages 636–666, 1991.
Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell compiler inliner. Journal of Functional Programming,

12(5), July 2002.
Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules: Rewriting as a practical optimisation technique

in GHC. In Haskell Workshop, pages 203–233, 2001.
Simon L. Peyton Jones. Compiling Haskell by program transformation: A report from the trenches. In European Symposium

on Programming, pages 18–44, 1996.
Neil Sculthorpe, Jan Bracker, George Giorgidze, and Andy Gill. The constrained-monad problem. In International Conference

on Functional Programming, pages 287–298, 2013a.
Neil Sculthorpe, Andrew Farmer, and Andy Gill. The HERMIT in the tree: Mechanizing program transformations in the

GHC core language. In Symposium on Implementation and Application of Functional Languages, pages 86–103, 2013b.
Mary Sheeran. muFP, a language for VLSI design. In Symposium on LISP and Functional Programming, pages 104–112, 1984.
Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In Logic in Computer Science,

pages 30–41, 2000.
Jeffrey Mark Siskind and Barak A. Pearlmutter. Perturbation confusion and referential transparency: Correct functional

implementation of forward-mode AD. In Implementation and Application of Functional Languages, pages 1–9, 2005.
Jeffrey Mark Siskind and Barak A. Pearlmutter. Nesting forward-mode AD in a functional framework. Higher Order Symbolic

Computation, 21(4):361–376, 2008.
Michael Spivak. Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus. HarperCollins

Publishers, 1971.
Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. System F with type equality

coercions. In Types In Languages Design And Implementation, pages 53–66, 2007.
Pierre Weis et al. A history of Caml, 2005. URL https://caml.inria.fr/about/history.en.html. Last updated 2005-01-28.
R. E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM, 7(8):463–464, 1964.
Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon L. Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

Giving Haskell a promotion. In Types In Languages Design And Implementation, pages 53–66. ACM, 2012.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 27. Publication date: September 2017.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.304.7522
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3272
http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3570
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.8777
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.4575
https://hackage.haskell.org/package/pretty
https://www.doc.ic.ac.uk/~wl/teachlocal/cuscomp/notes/introRuby.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.467
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.8402
http://comonad.com/reader/2011/what-constraints-entail-part-1/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.2599
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.7964
https://wiki.haskell.org/GHC.Generics
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.9450
http://www.sciencedirect.com/science/article/pii/030439759090154A
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.231
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.8996
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.2170
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.2170
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.4431
http://ku-fpg.github.io/papers/Sculthorpe-13-ConstrainedMonad/
https://www.semanticscholar.org/paper/The-HERMIT-in-the-Tree-Sculthorpe-Farmer/7d00fe7602b3c7d88ad78baf3a909aeb9c8a9508
https://www.semanticscholar.org/paper/The-HERMIT-in-the-Tree-Sculthorpe-Farmer/7d00fe7602b3c7d88ad78baf3a909aeb9c8a9508
https://archive.alvb.in/msc/thesis/reading/mufp-1984_MarySheeran.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.2886
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.2570
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.2570
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.147.3565
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/tldi22-sulzmann-with-appendix.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/tldi22-sulzmann-with-appendix.pdf
https://caml.inria.fr/about/history.en.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.224.5658

	Abstract
	1 Introduction
	2 Cartesian Closed Categories
	3 Changing Vocabularies: Cartesian Closed Categories
	4 Changing Categories: Closed Cartesian Functors
	5 Transforming GHC Core to CCC
	6 Constrained Categories
	7 Some Applications
	7.1 Computation Graphs and Compiling Haskell to Hardware
	7.2 Syntax
	7.3 Products of Categories
	7.4 Linear Maps
	7.5 Automatic Differentiation
	7.6 Incremental Computation
	7.7 Interval Analysis
	7.8 Other Examples

	8 Cocartesian and Distributive Categories
	9 Non-standard Types
	10 Some Implementation Issues
	10.1 Unboxed Operations
	10.2 Translation without Closure
	10.3 Postponing Inlining

	11 Related Work
	12 Future Work
	13 Conclusions
	A Linear Map Details
	References

